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MULTIPLE-MODE NONLINEAR FREE AND FORCED VIBRATIONS 
OF BEAMS USING F I N I T E  ELEMENT METHOD 

Chuh Mei* and Kamolphan Decha-Umphai** 
Old Dominion Un ivers i ty ,  Nor fo lk ,  V i r g i n i a  

ABSTRACT 

Mu1 tiple-mode non l inear  f ree  and fo rced o f  beam has been analyzed 

by the f i n i t e  element method. The geometric n o n l i n e a r i t y  i s  

inves t iga ted .  Inp lane ( l o n g i t u d i n a l  displacement and i n e r t i a  (ID11 a r e  

a l s o  considered i n  the formulation. Harmonic fo rce  m a t r i x  i s  de r i ved  

and explained. Nonl inear  f r e e  v i b r a t i o n  can be simply t rea ted  as a 

spec ia l  case o f  the general forced v i b r a t i o n  by s e t t i n g  the harmonic 

force m a t r i x  equal t o  zero. The e f f e c t  o f  the h igher  modes i s  more 

pronounced f o r  the clamped supported beam than the simply supported 

one. Beam w i t h o u t  inp lane displacement and i n e r t i a  ( I D I )  y i e l d s  more 

e f f e c t  o f  the h igher  modes than the one w i t h  inp lane displacement and 

i n e r t i a .  The e f f e c t s  of inp lane displacement and i n e r t i a  a re  t o  reduce 

n o n l i n e a r i t y .  [For beams w i t h  end supports r e s t r a i n e d  from a x i a l  

movement (immovable case), only the hardening type n o n l i n e a r i t y  i s  

observed]. However, beams o f  s m a l l  slenderness r a t i o  (L/R = 20) w i t h  

movable end supports, the so f ten ing  type n o n l i n e a r i t y  i s  found. The 

concentrated fo rce  case y i e l d s  a more severe response than the  u n i f o r m l y  

d i s t r i b u t e d  force case. F i n i t e  element r e s u l t s  are i n  good agreements 

w i t h  the s o l u t i o n s  o f  simple e l l i p t i c  response, harmonic balance method, 

Runge-Kutta method and experiment. 

* 
** 

Professor ,  Department o f  Mechanical Engineering and Mechanics 

Graduate Student 
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Chapter 1 

INTRODUCTION 

In modern engineering, w i t h  i ts  continuous refinement o f  instrumen- 

t a t ion ,  i t s  improved computational c a p a b i l i t i e s ,  and the h i g h  precision 

tolerances,  the theory of nonlinear vibrat ions is  gaining more and more 

prac t ica l  meaning. A1 though i t  i s  known t h a t  l i nea r  vibrat ions provide 

no more than a f i rs t  order approximation of an actual s i t ua t ion ,  they 

a r e  s u f f i c i e n t  for some pract ical  and engineering purposes. The l i nea r  

theory i s  inadequate, however, i f  the vibrat ion of an e l a s t i c  body 

involves amplitudes t h a t  a r e  not very small, a s  assumed i n  the l i nea r  

theory. Nonlinear vibration approach leads to completely new phenomena 

which a r e  n o t  possible i n  l i nea r  systems. For example, the dependence 

of frequency, or period of v i b r a t i o n ,  on amplitude cannot i n  p r inc ip le  

be handled by u s i n g  l i nea r  analyses. In such cases, nonlinear theory 

must be used t o  obtain more accurate r e s u l t s  and t o  explain new 

phenomena. The s teadi ly  increasing demand for more r e a l i s t i c  models of 

s t ruc tu ra l  responses has resulted i n  so lu t ion  techniques to deal w i t h  

nonlinear s t ruc tura l  problems. Apart from some few exceptions, i t  i s  

generally not possible t o  provide ana ly t ica l  closed-form solut ions fo r  

the d i f f e r e n t i a l  equations occurring i n  nonlinear vibrat ions of 

s t ruc tures .  Naturally, a numerical solution may be obtained when the 

motion corresponding to  cer ta in  i n i t i a l  and boundary conditions is  to be 

determined. Because of the advance i n  e l ec t ron ic s ,  modern d i g i t a l  

computers have been of great  value i n  solving nonlinear problems. 

In general ,  nonl inear i t ies  i n  s t ruc tu ra l  mechanics problems can 

arise i n  several ways. When material behavior i s  nonlinear,  the 
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generalized Hookels law is  no longer valid.  T h i s  type of nonl inear i ty  

i s  ca l led  ' 'material" o r  "physical" nonl inear i ty .  A1 t e rna t ive ly ,  

mater ia l  behavior can be assumed to  be l i nea r ,  b u t  s t ruc tu ra l  

deformation can become large and cause nonlinear strain-displacement 

r e l a t ions .  Deformation of a s t ruc tura l  member can a l s o  reach a 

magnitude t h a t  does not overstrain the mater ia l ;  i n  such a case, 

curvature of the deformed median line can no longer be expressed by a 

1 inear  equation. Problems involving la rge  s t ruc tu ra l  deformation a r e  

ca l l ed  "geometrically" nonlinear problems. A combination of material  

nonl inear i ty  and  geometric nonlinearity is  a l s o  possible.  

Any large-amp1 i tude deflection of a beam w h i c h  i s  res t ra ined  

a x i a l l y  a t  i t s  two ends, r e su l t s  i n  some midplane s t re tching.  T h i s  

s t re tch ing  must be accounted fo r  by u s i n g  nonlinear strain-displacement 

r e l a t ionsh  p (geometric nonl inear i ty) .  The  nonlinear equation of motion 

describing this s i tua t ion  had been the bas is  of a number of 

i n v e s t i g a t  ons. Most o f  these works a r e  based on a single-mode 

approach. Woinowsky-Kriegerl considered the e f f e c t  of an ax ia l  force on 

the vibrat ion of hinged bars. The  vibrat ion of an ex tens ib le  bar,  

carrying no transverse load and hav ing  the ends f ixed  a t  the supports,  

caused an ax ia l  t e n s i l e  force w i t h  a period equal t o  the half-period of 

the t ransverse vibrat ion o f  the bar. The e l l i p t i c  function was used t o  

produce the r e l a t ion  of frequency and amplitude of vibration. Eringen 2 

s t u d i e d  the nonlinear f ree  vibrations of e l a s t i c  bars having immovable 

h inged  ends. The solut ion was accomplished by the use of the 

per turbat ion method. The r a t i o  o f  nonlinear period over l i n e a r  period 

and ax ia l  stress were shown against  i n i t i a l  def lec t ion .  Only the 

hardening type nonl inear i ty  was found. Burgreen3 s t u d i e d  the nonlinear 
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f ree  v i b r a t i o n s  o f  a pin-ended column whose ends were pinned t o  p o i n t s  

f i x e d  i n  space. Th is  imposed the c o n d i t i o n  o f  a constant  end d is tance 

ins tead  o f  the usual t h e o r e t i c a l  assumption t h a t  the a x i a l  l oad  i n  the 

column remained constant  a long the beam length.  The e l l i p t i c  func t ion  

was performed to g e t  the exact  so lu t i on .  He a l s o  found t h a t  the 

frequency was dependent upon the ampli tude o f  v i b r a t i o n ,  the e f f e c t  o f  

the ampl i tude o f  v i b r a t i o n  becoming more pronounced as the Euler  l o a d  

was approached i n  which the  c l a s s i c a l  l i n e a r  theory y i e l d e d  the 

frequency o f  v i b r a t i o n  as zero. Woodal14 considered the non l inear  f r e e  

v i b r a t i o n s  o f  a t h i n  e l a s t i c  beam, I n  h i s  fo rmula t ion ,  a f i x e d  i n e r t i a l  

re fe rence frame and a Lagrangian d e s c r i p t i o n  o f  the motion were 

employed. By assuming the motion to be inex tens iona l  and, a t  the same 

time, a d m i t t i n g  the ex is tence o f  a r e s u l t a n t  normal f o rce  a c t i n g  on each 

c ross-sec t ion  o f  the beam, a system o f  governing equat ions was 

obtained. The s o l u t i o n s  o f  the simply-supported beam were obta ined by 

us ing  th ree  methods: the f i n i t e  d i f f e r e n c e  method, p e r t u r b a t i o n  

technique and Ga lerk in  weighted r e s i d u a l  method. For  the p a r t i c u l a r  

example considered i n  h i s  paper, the f i n i t e  d i f f e r e n c e  s o l u t i o n  appeared 

t o  be s tab le,  even f o r  o s c i l l a t i o n s  i n v o l v i n g  angular  r o t a t i o n s  a t  the 

ends o f  the beam o f  the order  o f  magnitude o f  80'. Furthermore, he 

found t h a t  the Ga lerk in  approximate s o l u t i o n  was i n  c l o s e r  agreement 

w i t h  the f i n i t e  d i f f e r e n c e  s o l u t i o n  than the  p e r t u r b a t i o n  so lu t i on .  

Raju e t  a L 5  s tud ied  f r e e  f l exu ra l  v i b r a t i o n s  o f  a simply-supported beam 

when a compatible l o n g i t u d i n a l  o r  inp lane mode was coupled w i t h  the 

fundamental f l e x u r a l  mode. The Rayleigh-Ri t z  method was employed. The 

r e s u l t s  showed t h a t  the e f fec ts  o f  l o n g i t u d i n a l  displacement and i n e r t i a  

were t o  reduce the n o n l i n e a r i t y  i n  the f l e x u r a l  frequency-ampli tude 
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r e l a t i o n s h i p .  Tseng and Dugundji6 i nves t i ga ted  a s t r a i g h t  beam w i t h  

f i x e d  ends e x c i t e d  by a pe r iod i c  motion a t  i t s  suppor t ing base i n  a 

d i r e c t i o n  normal t o  the beam span. By us ing G a l e r k i n ' s  method, the  

governing p a r t i a l  d i f f e r e n t i a l  equation was reduced t o  the well-known 

D u f f i n g  equat ion.  The harmonic balance method was app l i ed  t o  so lve the 

D u f f i n g  equation. Pandalai7 i nves t i ga ted  the case o f  s t r a i g h t  beams, 

i r r e s p e c t i v e  o f  the boundary condi t ions,  the non l i nea r  was found t o  be 

o f  the hardening type. He f u r t h e r  concluded t h a t  on ly  the hardening 

type can be ex is ted.  Later,  A t l u r i 8  showed t h a t  there were some cases 

f o r  which the so f ten ing  type n o n l i n e a r i t y  i s  poss ib le .  He inves t i ga ted  

the l a r g e  ampl i tude transverse v i b r a t i o n  o f  a hinged bar  w i t h  one end of 

the beam f r e e  t o  move l o n g i t u d i n a l l y .  The equat ion was solved by the 

p e r t u r b a t i o n  procedure o f  mu1 t i p le - t ime  scales. The ca l cu la ted  r e s u l t s  

showed t h a t  the predominant nonl inear  e f f e c t  was due t o  l o n g i t u d i n a l  

i n e r t i a  which was o f  the sof ten ing D u f f i n g  type. This  r e s u l t  was i n  

c o n t r a s t  t o  the e a r l i e r  analyses where a hardening n o n l i n e a r i t y  had been 

p red ic ted  when the on ly  n o n l i n e a r i t y  considered was the e f f e c t  o f  

average midplane s t r e t c h i n g  due t o  the out-of-plane d e f l e c t i o n .  

Through the foregoing studies, the general features o f  the 

non l i nea r  response o f  beams under harmonic e x c i t a t i o n  seem t o  have been 

l a r g e l y  c l a r i f i e d .  However, most o f  the ac tua l  c a l c u l a t i o n s  are  based 

on a one-term approximation f o r  the s p a t i a l  f u n c t i o n  w h i l e  the 

i n t e r a c t i o n s  between the modes w i t h  ampl i tude are  n o t  addressed. 

Corresponding t o  t h i s  phenomena, the e f f e c t  o f  m u l t i p l e  modes on beam 

response i s  needed. Because o f  the complex i ty  i n  the formulat ion,  there  

a re  very few i n v e s t i g a t i o n s  on mult iple-mode ana lys i s  i n  the 

1 i t e r a  ture.  
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McDonald' apparent ly  was the f i r s t  t o  consider  modal 

i n t e r a c t i o n s .  The considered i n v e s t i g a t i o n  was the v i b r a t i o n  o f  a 

un i fo rm beam w i t h  hinged ends which were res t ra ined.  The beam was 

subjected t o  a concentrated l a t e r a l  f o r c e  a t  the mid-span and then 

re leased from r e s t  a t  the de f lec ted  pos i t i on .  The non l inear  e f f e c t  i n  

t h i s  i n v e s t i g a t i o n  was produced by the  a x i a l  s t r e t c h i n g  o f  the beam. By 

assuming a mu1 tiple-mode expansion corresponding t o  the de f l ec ted  

p o s i t i o n ,  the  e l l i p t i c  f u n c t i o n  procedure was performed to eva lua te  the 

c o e f f i c i e n t s  r e l a t e d  to the  p a r t i c i p a t i o n  o f  each mode. Bennett and 

E i s l e y l O  i n v e s t i g a t e d  the s teady-state f r e e  and fo rced responses and 

s t a b i l i t y  f o r  l a r g e  ampl i tude nonl inear  v i b r a t i o n  o f  a beam w i t h  clamped 

ends. The general equat ions f o r  the  response and s t a b i l i t y  were 

der ived.  By app ly ing  Ga le rk in ' s  method, a s e t  o f  non l inear  o rd ina ry  

d i f f e r e n t i a l  equations was obtained. The s o l u t i o n  o f  fo rced v i b r a t i o n  

was evaluated by the method o f  harmonic balance. Later ,  Bennett'' 

considered the  problem invo lved  the u l  traharmonic response o f  a simply 

supported beam. Tseng and Dugundji l '  a l s o  used a multiple-mode 

expansion i n  cons ider ing  the  forced response o f  a clamped beam about  i t s  

buck led con f igu ra t i on .  The buckled beam was e x c i t e d  by the harmonic 

mot ion a t  i t s  suppor t ing base. By us ing Ga le rk in ' s  method, the  

governing p a r t i a l  d i f f e r e n t i a l  equation reduced t o  a mod i f i ed  D u f f i n g  

equat ion  which was solved by the  harmonic balance method. Sr in ivasan13 

so lved f ree and fo rced responses o f  beams undergoing moderately l a r g e  

ampl i tude s teady-state o s c i l l a t i o n s  by the averaging method o f  R i t z .  

The a p p l i c a t i o n  o f  R i t z ' s  method t o  so lve the governing non l i nea r  

p a r t i a l  d i f f e r e n t i a l  equation, y ie lded  nonl i near a1 gebra i  c equat ions 

i ns tead  of non l inear  o rd inary  d i f f e r e n t i a l  equations. To so lve these 
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nonlinear algebraic equations, the Newton's method or bigradient matrix 

method had to  be employed. The method was shown by assuming the f i r s t  

two symmetric modes o f  the linear system for the deflection of beam. I t  

was clear t h a t  the method yielded as many simultaneous nonlinear 

algebraic equations as the number of modes included. Nayfeh e t  al .14 

proposed a numerical-perturbation method for the determination of 

nonlinear forced response of beams. The deflection curve of the beam 

was represented w i t h  a multiple-mode expansion i n  terms of the linear 

modes. Then the temporal problem was solved by the method of multiple 

scales, and internal resonances was also considered. Van Dooren and 

B o d 5  considered the nonl i near transverse v i  bra t i  ons of a u n i  form beam 

w i t h  ends restrained and forced transversely by a two-mode funct ion  

w h i c h  was harmonic i n  time. A simply supported beam was considered by 

the two-mode approach, Approximate solutions were found by u s i n g  

Urabe's numerical method applied t o  Galerkin's procedure and by an 

ana ly t ica l  harmonic balance-perturbation method. The existence of sub- 

harmonic response of order 1/3 and  harmonic response i n  the sub-harmonic 

region of the forcing function was proved. Takahashi16 analyzed the 

inextensible clamped-free and free-free beams by u s i n g  Galerkin's method 

and the harmonic balance method. Yamaki and  Mori17 investigated 

' nonlinear forced vibrations o f  a clamped beam under uniformly 

distributed periodic lateral loading  w i t h  the effects of b o t h  in i t ia l  

deflection and i n i t i a l  axial  displacement taken i n t o  consideration. The 

problem was f i r s t  reduced to t h a t  of a f in i te  degree-of-freedom system 

w i t h  the Galerkin procedure, the steady-state solutions w h i c h  were 

obtained by a p p l y i n g  the harmonic balance method. Actual calculat ion 

was carried o u t  for  the three degree-of-freedom system w i t h  symmetric 
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modes. Yamaki e t  a1.18 also performed experiments to compare to the 

a n a l y t i c  results. The tes t  results were reported i n  the root-mean- 

square of deflection instead of the actual deflection of the beam. 

Generally, the classical approach t o  solve nonlinear vibrations of 

a beam is t o  s ta r t  w i t h  the so-called assumed mode shape. By employing 

the Galerkin’s method, the governing nonlinear pa r t i a l  differential 

equation of motion is  reduced to  a system of nonlinear ord inary  

differential equations. The el l ipt ic  function, perturbation method, or 

numerical methods, can t h e n  be employed t o  solve the problem. 

In practice, many optimum or minimum-weight designed structures are 

Because of the versatility of the f ini te  element method, i t  i s  

Meil’ 

complex. 

more suitable t o  use this method t o  analyze complex structures. 

investigated nonlinear vibration of beams by matrix displacement 

method. Nonlinear free vibrations of various boundary condi t ions  were 

investigated and good agreements were obtained between the f ini te  

element method and other numerical methods. Rao e t  a1.” studied the 

large amplitude free oscillations of beams and o r tho t rop ic  circular 

plates. Their f ini te  element formulation was based on an appropriate 

linearization of the nonlinear strain-displacement relations. Simply 

supported and clamped beams were investigated. Comparison of their 

results w i t h  the earlier work confirmed the reliabil i ty and 

effectiveness of the linearization of the strain-displacement 

relations. Reddy and S i n g h 2 1  investigated the large-deflection analysis 

of t h i n  elastic curved beams by conventional and mixed finite element 

methods. The conventional f i n i t e  element method was based on the t o t a l  

potential energy expression, whereas the mixed method was based on a 

Reissner-type variational statement and involved the bending moments and 
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d e f l e c t i o n s  as primary dependent var iab les .  From t h e i r  r e s u l t ,  i t  

appeared t h a t  i n  general the  mixed method y i e l d e d  more accurate 

r e s u l t s .  Recently, Mei and Decha-Umphai 22,23,24 developed the harmonic 

f o r c e  m a t r i x  f o r  s o l v i n g  nonl inear  fo rced v i b r a t i o n s  o f  beams and p l a t e s  

by f i n i t e  element method. By employing the l i n e a r i z i n g  methodz5 and so- 

c a l l e d  "single-mode" approach, the frequency-amp1 i tude- force r e l a t i o n s  

were obtained. There a r e  very few at tempts t o  so lve non l i nea r  

v i b r a t i o n s  o f  beam us ing f i n i t e  element method w i t h  mu1 tiple-mode 

expansion. Busby and WeingartenE6 i n v e s t i g a t e d  beams o f  s imp ly  

supported and clamped boundary cond i t ions .  T h e i r  f i n i t e  element 

technique was performed on ly  t o  o b t a i n  the  non l i nea r  d i f f e r e n t i a l  

equat ions o f  the s t r a i g h t  beam and the method o f  averaging was then used 

t o  o b t a i n  an approximate so lu t ion .  Cheung and LauZ7 i n v e s t i g a t e d  the 

two-mode non l inear  v i b r a t i o n  o f  beams. The essence o f  t h e i r  method 

cou ld  be regarded as an incrementa1 harmonic balance method assoc ia ted  

w i t h  a f i n i t e  s t r i p  procedure i n  the time-space domain. Unfor tunate ly ,  

the works repo r ted  i n  References 26 and 27 cou ld  n o t  be e x a c t l y  

c l a s s i f i e d  as f i n i t e  element method. 

The accuracy o f  the theo re t i ca l  p r e d i c t i o n s  would n o t  be completed 

unless the experimental s tud ies  had been compared. Bennet t  and E i s l e y l '  

performed the experiment o f  a clamped beam t o  compare w i t h  t h e i r  

t h e o r e t i c a l  r e s u l t s .  Tseng and Dugundji6 conducted the experiment o f  a 

s t r a i g h t  beam w i t h  f i x e d  ends which was e x c i t e d  by the p e r i o d i c  motion 

o f  i t s  suppor t ing  base i n  a d i r e c t i o n  normal t o  the beam span. A l l  o f  

these Wo experiments were found t o  compare favorab ly  w i t h  the corre-  

sponding t h e o r e t i c a l  p red ic t ions .  However, these experiments were 

c a r r i e d  o u t  w i t h  spec ia l  k inds  o f  e x c i t a t i o n s ,  eg. suppor t ing  base 
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excitation. Yamaki e t  a1.18 performed the experimental studies of a 

clamped beam under a uniformly distributed periodic load. Besides the 

reasonable agreement w i t h  the theoretical predictions, l7 their 

experimental results seem t o  provide effective da ta  f a c i l i t a t i n g  further 

theore ti ca 1 ana lyses. 

I t  is clear t h a t  a substantial amount of literature exists on 

nonl i near v i  bra t ions of beams. Sa thyamoor t h y  28,29 published Wo 

excellent survey articles, one which dealt w i t h  l iterature concerning 

classical nonlinear methods, and another w i t h  the f ini te  element 

method. 

Through the foregoing studies, the general features of the 

nonlinear free and forced vibrations of beams seem t o  have been largely 

clarified. However, modern structures are complex and the more accurate 

theoretical predictions are preferred, therefore, the mu1 tiple-mode 

approach has t o  be considered i n  the formulation of nonlinear v ibra t ion  

problems. Since the evolution of d i g i t a l  computers, the f ini te  element 

method has become widely used t o  solve many types of complex 

structures. I t  is the purpose of this research t o  extend the f ini te  

element method t o  mu1 tiple-mode nonlinear vibrat ions.  

In this thesis research, multiple-mode nonlinear free and forced 

vibrations of beams using f i n i t e  element method are presented. B o t h  

out-of-plane deflection and inplane displacement are included i n  the 

formulation. The classical method  i s  provided i n  Chap. 2 t o  review the 

concepts of nonlinear v ibra t ions .  In Chap. 3, the f ini te  element 

formulation i s  presented i n  detail. The nonlinear stiffness matrices 

using the linearizing methodz5 are derived. The harmonic force matrix 

f o r  mu1 tiple-mode approach i s  derived for b o t h  uniformly distributed and 
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concentrated forces. I n  Chap. 4, the s o l u t i o n  procedure o f  m u l t i p l e -  

mode nonl inear  v i b r a t i o n s  by f i n i t e  element method i s  presented. I n  

Chap. 5, beams w i t h  var ious out-of-plane and inp lane boundary cond i t i ons  

a r e  invest igated.  The d e f i n i t i o n  o f  inp lane boundary cond i t i on  i s  a1 so 

explained. The r e l a t i o n s  . o f  frequency and ampli tude f o r  var ious 

boundary cond i t i ons  and loads are tabulated and p lo t ted .  Resul ts are 

a l s o  compared - t o  o ther  c lass i ca l  o r  experimental r e s u l t s  whenever 

a v a i l a b l e .  The convergence c r i t e r i a  are a l s o  studied. Chapter 6 g ives 

the concluding remarks. 
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Chapter 2 

CLASSICAL FORMULATIONS 

I n  t h i s  chapter, the mathematical fo rmula t ions  o f  the c l a s s i c a l  

method are  expressed. Equations o f  motion f o r  an i s o t r o p i c  beam a r e  

presented. The c h a r a c t e r i s t i c  equations a re  prov ided by per forming the 

G a l e r k i n ' s  method. For single-mode approach, the frequency-amp1 i tude 

r e l a t i o n  i s  shown i n  a simple closed-form s o l u t i o n  which could n o t  be 

done f o r  the mu1 tiple-mode approach. For mu1 tiple-mode approach, the 

general f o rmu la t i on  i s  shown t o  provide f o r  b e t t e r  understanding i n  the 

mu1 tiple-mode formulat ion.  A l l  o f  these fo rmu la t i ons  are  performed i n  

d e t a i  1. 

2.1 Classical Method 

I n  general, non l inear  forced v i b r a t i o n  o f  a beam i s  so lved by the  

assumed mode method. By employing the  Ga le rk in ' s  method, the assumed 

mode shape i s  s u b s t i t u t e d  i n t o  the governing equat ion o f  motion, then 

the  i n t e g r a t i o n  i s  performed over s p a t i a l  domain. The c h a r a c t e r i s t i c  

equat ions a r e  obtained. The numerical t ime i n t e g r a t i o n  o r  o t h e r  

numerical method i s  needed f o r  sol v i  ng the frequency-amp1 i tude 

r e l a t i o n s .  Both s i n g l e  and multiple-mode approaches are  shown i n  the  

formulat ions.  Because o f  the simp1 i c i  ty o f  single-mode approach, t h i s  

approach i s  shown f i r s t  t o  provide some concepts which l a t e r  i s  extended 

t o  the mu1 tiple-mode formulat ion.  
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2.2 Single-Mode Approach 

I 

The c l a s s i c a l  method f o r  single-mode approach i s  s t r a i g h t  

forward. The frequency-ampli tude r e l a t i o n  e x i s t s  i n  a simple closed- 

form r e l a t i o n  which cou ld  n o t  be done f o r  multiple-mode approach. The 

fo rmu la t i on  f o r  single-mode approach i s  as fo l lows.  

Assume t h a t  a un i fo rm beam w i th  cross sec t i ona l  area A, moment o f  

i n e r t i a  I and l e n g t h  L i s  subjected t o  a un i fo rm ly  d i s t r i b u t e d  p e r i o d i c  

l a t e r a l  load  F(x,t) as shown i n  Fig. 1. I n  t h i s  f i g u r e ,  a clamped beam 

i s  shown f o r  s i m p l i c i t y .  The d e f l e c t i o n  i s  denoted by w(x,t). With the 

assumption t h a t  a x i a l  displacements a t  bo th  ends a r e  zero (immovable 

i np lane  displacement), the bas ic  governing equat ion o f  motion f o r  the 

non l i nea r  bending forced v i b r a t i o n  o f  a beam i s  found t o  be 

where 

where p and E a r e  mass dens i t y  and Young's modulus, respec t i ve l y .  The 

s u b s c r i p t  x f o l l ow ing  a comma denotes d i f f e r e n t i a t i o n  w i t h  respec t  t o  x 

and a d o t  denotes d i f f e r e n t i a t i o n  w i t h  respec t  t o  t ime t. 

For  single-mode approach, the d e f l e c t i o n  i s  assumed as 

w(x,t) = 44x1 g ( t )  (2.3) 

where $ ( x )  represents  the normal mode o f  l i n e a r  f r e e  v i b r a t i o n  which 

s a t i s f i e s  the boundary cond i t i ons  f o r  the case i n  considerat ion,  and the 

modal ampl i tude g ( t )  i s  an unknown func t ion  of time. 
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Fig.  1 Geometry o f  a clamped beam 
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Using the foregoing expression f o r  w, the G a l e r k i n ' s  method can be 

a p p l i e d  t o  Eq. (2.11, which leads to 

N 
L 

1 [Eq. (2.111 $(XI dx = Residual = 0. 
0 

Equat ion (2.4) can be expressed as 

(2.4) 

Equat ion (2.5) can be r e w r i t t e n  i n  the form as 

L L 
PE g + [E1 1 Q, xxxx Q d x l  g l l  $2 dx 

0 0 

(2.6) 
L 2  L L 2  L 

0 0 0 0 
- [N I 6,xx 6 d x l  g l l  6 dx - F ( t )  1 4 d x / l  6 dx = 0. 

By s u b s t i t u t i n g  Eq. (2.3) i n t o  Eq. (2.21, the inp lane f o r c e  N can be 

expressed as 

By us ing t h i s  value o f  N, Eq. (2.71, i n  con junc t ion  w i t h  Eq. (2.61, the 

c h a r a c t e r i s t i c  equat ion i s  obtained i n  the form as 

.. 
m g + k g + i g 3 - c F ( t )  = O  (2.8) 

where m, k and a r e  the mass, l i n e a r  s t i f f n e s s  and non l inear  s t i f f n e s s  

terms, r e s p e c t i v e l y .  
- 

The values o f  m, k and k can be expressed as 



- 
m = p A  

15 

(2.9) 

The value of constant  c i s  expressed a s  

The c h a r a c t e r i s t i c  equation, Eq.  (2.81, can be written a s  

.. 
m g + k g + k ? - P ( t )  = O  

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where P ( t )  is the force term which is expressed a s  

P ( t )  = c F ( t )  (2.14) 

The c h a r a c t e r i s t i c  equation, Eq. (2.131, can be solved fo r  the 

frequency-amp1 i tude-force re la t ion  i n  a closed-form solut ion by various 

approximate methods. I t  should be pointed out  t h a t  many of these 

approximate methods y ie ld  the same closed-form solut ion which can be 

c l a s s i f i e d  a s  a standard form. Because of the s implici ty  o f  the 

following method, i t  is chosen t o  be shown i n  depth fo r  the der ivat ion 

of the closed-form solut ion.  T h i s  method is  based on omitt ing the 

h i g h e r  harmonic term. 

To obtain the frequency-amp1 i tude-force r e l a t ion  i n  closed-form 

so lu t ion ,  g ( t )  i s  specif ied as  

g ( t )  = A COS ( u t )  (2.15) 

where A is  the amplitude o f  deflection of the beam and w i s  nonlinear 

frequency. The nonlinear term, g ( t ) ,  is expressed a s  3 
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(2.16) 3 3 3  g ( t )  = A COS ( w t ) .  

By expanding cos3 ( w t )  , i t  can be written a s  

cos 3 ( w t )  = - 3 cos ( w t )  + - 1 cos (3  u t )  
4 4 (2.17) 

By neglecting the h i g h e r  harmonic term, cos ( 3  u t )  , the approximation 

of cos3 ( w t )  can be written a s  

3 - 3  
4 cos ( w t )  = - cos ( u t ) .  (2.18) 

By s u b s t i t u t i n g  Eq. (2.18) i n t o  Eq. (2.161, the nonlinear term is 

expressed as ,  
3 3 3  

g ( t )  = - A  COS ( U t ) .  (2.19) 4 

The force  term, P ( t ) ,  is  written as,  

P ( t )  = Po cos ( w t )  

and by Eq. (2.141, 

and 

Po = c Fo 

F( t) = F, cos ( w t )  

(2.20) 

(2.21) 

(2.22) 

where Fo i s  force i n t e n s i t y  which  has the dimension as force per u n i t  

length.  

By subs t i t u t ing  Eqs. (2.151, (2.19) and (2.21) i n t o  Eq. (2.131, the 

frequency-amp1 i tude-force r e l a t ion  can be shown a s  

2 3 -  3 - w m A cos(wt) + k A cos(wt)  + - k A cos(wt)  4 

- Po cos(wt) = 0. (2.23) 

Equation (2.23) can be rewritten i n  the closed-form so lu t ion  a s  
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(2.24) 3 2  
W2 = uL2 + 7 @ A - Po/A 

where 

u t  = k/m (2.25) 

- 
B = k/m . (2.26) 

Equation (2.24) is  the standard closed-form r e l a t i o n  between frequency 

and amplitude a n d  force. uL i s  defined a s  l i nea r  frequency w h i c h  has 

the dimension a s  radian per second. 

2.3 Mu1 tiple-Mode Approach 

The c l a s s i ca l  method for  mu1 tiple-mode approach follows the same 

path a s  single-mode approach. B u t  the mu1 tiple-mode approach could not 

y i e ld  the simple closed-form frequency-amplitude-force r e l a t ion ,  t h u s ,  

numerical integrat ion or  other approximate method i s  needed. 

The general formulation of mu1 tiple-mode approach is  a s  follows, 

where 4i(x)  i s  the i - t h  normalized l i n e a r  mode shape w i t h  maximum o f  

unity,  and g i ( t )  i s  the time function. The to t a l  number of modes i n  

consideration is n. 

The time function g i ( t )  can be expressed a s  

where Ai i s  the amplitude of i - t h  mode shape. By u s i n g  the assumed 

expression of w ,  Eq. (2.271, the Galerkin's method can be applied to  Eq.  

(2.1) a s  follows: 
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L I CEq. (2.1)l  4i (XI dx = Residual 0 
0 

i = 1,2..., n. 

(2.29) 

By s u b s t i t u t i n g  Eq. (2.27) i n t o  Eq. (2.21, the  a x i a l  f o rce  N i s  

expressed as 

EX L n  2 N=xI cc 4 i ,x 9 i 1 dx. 
o i = l  

(2.30) 

By s u b s t i t u t i n g  Eq. (2.30) i n t o  Eq. (2.291, the f o l l o w i n g  s e t  o f  

non l i nea r  o rd ina ry  d i f f e r e n t i a l  equations a r e  obta ined:  

.. n n n  - 
mi gi + ki gi  + c c k i j r s  9.9 j r 9 s j = l  r = l  s-1 

where 
= Pi ( t )  i = 1,2,*.., n (2.31) 

(2.32) 

(2.33) 

L L 
4. dx s,xx 1 

I O .  4 d x J @  
J,X r s x  EA o 0 - - - -  

i j r s  2L L A  
k (2.34) 

(2.35) 

The s e t  o f  non l inear  o rd inary  d i f f e r e n t i a l  equat ions shown by Eq. (2.31) 

i s  the s e t  of c h a r a c t e r i s t i c  equations f o r  non l inear  fo rced v i b r a t i o n .  



19 

In general ,  the number of cha rac t e r i s t i c  equations is the same as  the 

number of mode shapes which are  included i n  the assumed deflect ion 

shape, Eq.  (2.27). These cha rac t e r i s t i c  equations a re  highly nonlinear 

I 

and coupled, t h u s ,  i t  i s  very tedious to solve for the s teady-state  

solut ion.  One way to o b t a i n  the frequency-amp1 i tude-force relation i s  

by performing numerical integration, e.g. , Runge-Kutta method. 

To c l a r i f y  the method, a two-mode approach is  performed a s  follows: 

2 
(2.36) 

T h e  def lect ion shape w ( x , t )  i s  assumed a s  the combination of two 

modes. In this case, n i s  equal two. The value of N, Eq. (2.301, can be 

expressed a s  

(2.37) 

By u s i n g  Eqs. (2.36) and (2.371, the set  of c h a r a c t e r i s t i c  equations, 

Eq. (2.311, can be obtained as 

3 2 2 .. 
ml 91 + kl  91 + 5111 91 + 5 1 1 2  91 92 + kl122 9 9  1 2 

= P1 ( t )  
+ I1222 92 

3 2 2 .. 
m2 92 + k 2  92 + 5111 91 + E2112 91 92 + ~ 2 1 2 2  91 92 

= P2 ( t )  
’+ k2222 92 

3 

(2.38) 

(2.39) 
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where - 
m = p A  1 

kl - - E1 -I 41,xxxx 4 1 d x / j -  $lL dx 
0 

L 2  
L 

d x - I  4 1,xx 4 1 dx/! 41 dx 
- E i  L 2  
kllll 2L = - - I  4 

0 0 
1 ,X 0 

- EX L L L 
4 dx/! 412 dx 

0 
k1122 = 2r -I 41,x 42,x dx I 42,xx 1 

0 0 

- 
m = p A  

2 

L L 
k 2  = E 1  I 4 2,xxxx 4 2 dx/! 4: dx 

0 
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12 L L 

0 0 0 

- EA 
4 dx/ /  O2 dx 2,xx 2 Q d x - I  $ =z-I Q 1,x 2,x k2122 

12 L 
Q d x / l  Q2 dx. 

2,xx 2 d x - I  Q 
- EA L 2  
k2222 2L = - - I  4 

0 0 
2,X 

0 

(2.40) 

The steady-state response f o r  a two-mode non l inear  v i b r a t i o n  

problem can be obta ined by employing the Runge-Kutta method f o r  s o l v i n g  

the  non l i nea r  coupled c h a r a c t e r i s t i c  equations, Eqs. (2.38) and (2.39). 
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Chapter 3 

FINITE ELEMENT FORMULATION 

In this chapter, the formulation of a f ini te  element method i s  

presented. The expressions for strain-displacement relation, kinetic 

energy and potential energy are provided. The linearizing function f o r  

deriving nonlinear stiffness matrices i s  defined. The inplane 

displacement and lateral deflection are expanded i n  the cubic order. 

Furthermore, the der ivat ion of harmonic force matrix is  performed. 

3.1 Strain and Curvature-Displacement Relations 

The strain-displacement relation of a beam element shown i n  F i g .  2 

i s  given by 
1 2  

X 
E =  U S x  + j w. 

X 
( 3 . 1 )  

where is the strain i n  x-direction of beam, u is the inplane 

displacement and w i s  the lateral deflection. The curvature- 

displacement relation is defined as 

( 3 . 2 )  - 
4x - w’xx 

where 4, i s  the curvature. The t o t a l  strain, E , i s  defined as 

1 2  
+ - w  - W a x x *  u s x  2 )x  

E =  ( 3 . 3 )  
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Fig .  2 Beam Element 
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3.2 Kinetic and S t r a i n  Energies 

1 The k i n e t i c  energy o f  a beam element i s  g iven by 

( 3 . 4 )  

where p i s  mass per  u n i t  l e n g t h  and L i s  element length.  The k i n e t i c  

energy can be separated i n t o  two pa r t s  as 

T = Ts + Tb. (3.5) 

The k i n e t i c  energy due t o  mid-plane s t r e t c h i n g  Ts i s  de f ined a s  

R 
1 02 

T = - p l  u dx s 2  
0 

and the k i n e t i c  energy due t o  bending Tb i s  de f ined a 

0 

The s t r a i n  energy o f  a beam element i s  given by 

(3.6) 

(3.7) 

0 
(3.8) 

where E i s  Young's modulus, i s  the c ross-sec t iona l  area o f  beam, and I 

i s  the moment o f  i n e r t i a .  By s u b s t i t u t i n g  Eqs. (3.1) and (3.2) i n t o  Eq. 

(3.81, the r e l a t i o n  between s t r a i n  energy and displacements can be 

w r i t t e n  as 

2 
2 1 1 2  

x 2  x X 

R 
U = E CuSx + 2u, ( -  wS2)  + (2 w, 1 1 dx 

0 

2 
R 

1 
2 

+ - 1 E I w s X x  dx. 
0 

(3.9) 
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I 

The  s t ra in  energy U can be separated in to  two par t s ,  namely, l i n e a r  

strain energy UL and nonlinear s t ra in  energy U N L .  

u = U L  + U N L .  

The l inear strain energy for  Eq. (3.10) is  expressed a s  

R R 

0 0 

1 
= 2 1 I E us: dx + 7 I E I w , : ~  dx.  "L 

(3.10) 

(3.11) 

Similar ly ,  the nonlinear strain energy for  Eq. (3.10) i s  expressed a s  

3.3 Displacement Functions 

The displacement functions are chosen to be i n  cubic order a s  
follows: 

3 w = a l  + a2x + a3x2 + a4x 

and 
u = a5 + a6x + a,x2 + a8x 3 

(3.13) 

(3.14) 

The generalized coordinates a l ,  *.**., a8 can be written i n  vector form 

as  

(a}T = [al a2 a3 a4 a5 a6 a7 a,] (3.15) 

a n d  the element nodal displacement, Fig. 2, are defined a s  

= [w, el w2 e2 u1 al u2 a,] (3.16) 
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where Bi and ai a re  the d i f f e r e n t i a t i o n  w i t h  respec t  t o  x of w i  and ui 

a t  node is respec t i ve l y .  The genera l ized coord ina tes  i n  Eq. (3.15) can 

be w r i t t e n  as 

{a) = [ T I  (61 (3.17) 

where [ T I  i s  a t rans format ion  matr ix .  

The displacements u and w i n c l u d i n g  t h e i r  d e r i v a t i v e s  can be 

expressed i n  terms o f  element nodal displacements as 

= CO 0 2 6x 0 0 0 03 {a}  

= [ G I  [ T I  (61 

w s x x  

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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3.4 Linearizing Function 

5,25 The l inear iz ing  function is defined a s  
1 
2 x  f = - w ,  (3.23) 

By s u b s t i t u t i n g  Eq. (3.21) in to  (3.231, the l inear iz ing  function can be 

expressed a s  

f = ?  CEI CTI (6). (3.24) 

T h i s  l inear iz ing  function f is assumed to  be constant i n  each element. 

The main advantage of us ing  l inear iz ing function is shown i n  the 

fo l  1 owing sections.  

3.5 Element Equations of Motion for Nonlinear 
Free V i  bra ti on 

The nonlinear f r ee  vibration is  the backbone of the invest igat ion 

of steady-state response. The equations of motion can be derived by 

applying Lagrange's equations a s  follows. 

From Eqs. (3.6) and (3.181, the expression of k ine t i c  energy due t o  

mid-plane stretching Ts can be written i n  matrix form a s  

(3.25) 

where EmS] i s  the element mass matrix due to  inplane displacement 

function and i s  expressed as  



R 

0 
[ m s l  = [T IT  I p [ B I T  C B I  dx [ T I .  
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(3.26) 

S i m i l a r l y ,  from Eqs. (3.7) and (3.20) the express ion o f  k i n e t i c  energy 

due t o  bending Tb can be w r i t t e n  as 

(3.27) 

where [m,] i s  the element mass matr ix  due t o  bending and i s  expressed as 

The t o t a l  k i n e t i c  energy T, Eq. (3.51, can be expressed i n  m a t r i x  form 

as 

T = {ilT [ m l  G I  (3.29) 2 

where [m] i s  the element mass ma t r i x  and i s  expressed as 

Em1 = Cmsl + Cmbl (3.30) 

The l i n e a r  s t r a i n  energy UL, Eq. (3.111, can be expressed i n  m a t r i x  

form as  

where C k ~ l  i s  the element l i n e a r  s t i f f n e s s  mat r ix .  The element l i n e a r  

s t i f f n e s s  m a t r i x  [kL] can be separated i n t o  u -pa r t  CkLsl and w-par t  

[ k ~ b l  as  

where 

(3.32) 

(3.33) 
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R 

0 
[ k L b l  = [TIT I E1 [GIT CGI dx [TI .  (3.34) 

The nonlinear strain energy UNL, Eq. (3.121, can be written by 

using the linearizing funct ion f, Eq. (3.23), a s  

(3.35) 

By s u b s t i t u t i n g  Eqs. (3.19) and (3.21) i n t o  Eq. (3.351, the nonlinear 

strain energy can be expressed i n  matrix form as  

(3.36) 

where [k,,] i s  the element nonlinear stiffness matrix and i s  expressed 

as  

R 

0 
[ k N L l  = [TIT I {E A' f [[clT [ E l  + [ E l T  [ C l ]  

+ E f2 [ E l T  [ E l }  dx [TI. (3.37) 

The linearizing funct ion  f which is  a constant  for each element 

transforms the element nonlinear stiffness matrix C k N L l  i n t o  the linear 

form as  i n  Eq. (3.37). The strain energy U, Eq.  (3.101, can be written 

a s  

where [ k l  i s  the element stiffness matrix and i s  expressed as 

(3.38) 

(3.39) 
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The a p p l i c a t i o n  o f  Lagrange's equation leads t o  the element non l i nea r  

f r e e  v i b r a t i o n  equat ion o f  motion as 

(3.40) 

3.6 Element Harmonic Force Matrix 

I n  Chap. 2, the equat ion o f  motion f o r  non l inear  fo rced v i b r a t i o n  

i n  c l a s s i c a l  approach i s  expressed i n  Eq. (2.13) as 

when the f o r c i n g  f u n c t i o n  P ( t )  i s  a simple harmonic Po cos ( u t ) ,  an 

approximate s o l u t i o n  o f  Eq. (3.41) i s  i n  the form o f  Eq. (2.24) as 

w 2 = U * + ~ ~ A ~ - P / A .  
L 4  0 

(3.42) 

When the  f o r c i n g  f u n c t i o n  P ( t )  i s  a s i m p l e .  e l l i p t i c  f u n c t i o n  and 

expressed as 
* 

P ( t )  = B A cn (At, r))  

* 
= B g  (3.43) 

where g i s  the  Jacobian e l l i p t i c  func t ion  and expressed as 

g = A cn (At,r)) (3.44) 
* 

where B i s  f o r c i n g  ampli tude factor ,  h i s  c i r c u l a r  frequency o f  the 

Jacobian e l l i p t i c  f u n c t i o n  and T) i s  modulus o f  the Jacobian e l l i p t i c  

f unc t i on .  

By expanding the e l l i p t i c  f o rc ing  f u n c t i o n  i n t o  F o u r i e r  s e r i e s  then 

comparing the order  o f  the magnitude o f  the var ious  components, Hsu 30 

concluded t h a t  the harmonic f o r c i n g  func t ion  Po cos ( u t )  i s  the f i r s t  

o rder  approx imat ion of the e l l i p t i c  f o r c i n g  func t i on  B A cn (At, r ) ) .  
* 
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Also, the f i r s t  order appoximation of the e l l i p t i c  response of E q .  

(3.41) y i e lds  the same frequency-amp1 i tude-force r e l a t ion  o f  E q .  (3.42) 

which is  the perturbation solution (standard form, E q .  (2.24)). To 

obtain the exact  e l l i p t i c  response of Eq. (3.411, the forcing function 

P ( t )  i n  Eq.  (3.43) i s  t rea ted  a s  a l i n e a r  s p r i n g  in the Duffing 

equation, Eq. (3.41). 

3 *  .. 
m g + k g + k g  = B  g 

m g +  (k - B * )  g + E  g 3 = 0 .  (3.45) 

* 2  T h i s  l i n e a r  s p r i n g  force B*g possesses a potent ia l  energy a s  B g /2.  

Similar ly ,  the potent ia l  energy o f  a beam due  to the uniform harmonic 

forcing function Fo cos w t  can thus be approximated by 

V = C 7 1  B * ' 2  w dx 
0 

(3.46) 

where the summation denotes the sum of a l l  elements. 
* 

To f ind the value of B , the conclusion by Hsu3' i s  needed (Eq. 

(3.43)) a s  follows 

* 
= B A cn ( A t , q )  

N *  Po cos(wt) = B A cn ( A t , r t ) .  (3.47) 

By using H S U ' S  conclusion, the harmonic function cos ( u t )  i s  the f i r s t  

order approximation of the e l l i p t i c  function cn ( A t , r t ) ,  t h u s ,  
N 

cos ( u t )  = cn ( A t , r t ) .  (3.48) 
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By u s i n g  the relat ion of Eq. (3.481, subst i tutes  i n t o  Eq. (3.471, the 

relat ion of B* can be expressed as 

B* = PJA. (3.49) 

From Eq. (2.211, the relation of Po i s  expressed as follows 

Po = c Fo (3.50) 

where the constant c is  expressed i n  Eq. (2 .12) .  The constant c can be 

interpreted as  the r a t io  o f  area under  mode shape and square of mode 

shape. And the nonlinear mode shape i n  multiple-mode approach i s  

assumed t o  be sum of l inear  modes, t h u s ,  the deflection w ( x , t )  can be 

written as  
w ( x s t )  = $ * ( X I  g f ( t )  (3.51) 

* * where 4 ( x )  i s  normalized nonl inear  mode and g ( t )  i s  time function, 

t h u s ,  

Ai 4i ( X I  
* 1 "  

4 ( X I  = - c 
i =1 A (3.52) 

where Ai and $ i ( x )  a re  the amplitude of i - t h  mode shape and the i - t h  

normalized l inear  mode shape, respectively. By us ing  Eq. (3.52) and the 

def ini t ion of c i n  Eq. (2.121, in general, the expression of c fo r  

simple harmonic force i s  expressed a s  

(Load elements) 
* 

I Q d x  
2 c =  

L *  
. (3.53) 
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Thus, f o r  the  un i fo rm ly  d i s t r i b u t e d  fo rce  over the e n t i r e  beam, the 

value o f  c i s  expressed as  

0 c =I. 

0 

I n  the  f i n i t e  element method, the concentrated f o r c e  can be represented 

by the  d i s t r i b u t e d  fo rce  over a small length,  thus, the value c f o r  

concentrated can be expressed as  

a c =.- (3.55) 

0 

where a and b a r e  coord inates o f  beam under t h a t  d i s t r i b u t e d  force.  

By us ing  the Eq. (3.461, the element harmonic f o r c e  m a t r i x  can be 

de r i ved  from 

(3.56) 
0 

where B* i s  expressed i n  Eq. (3.49). By s u b s t i t u t i n g  Eq. (3.20) i n t o  

(3.561, the p o t e n t i a l  energy due t o  the un i fo rm harmonic fo rce  can be 

expressed as 

(3.57 1 

where [h] i s  the element harmonic force m a t r i x  and expressed as  



R 
[h] = B* [T IT  I [ D I T  CDI  dx [T I .  

0 
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(3.58) 

By comparing Eq. (3.58) t o  Eq. (3.28) and us ing  the expression o f  B* and 

Eqs. (3.49) and (3.501, the harmonic fo rce  m a t r i x  can be w r i t t e n  as PO,  

C F  
(3.59) 

where c i s  a cons tan t  expressed i n  Eqs. (3.531, (3.54) o r  (3.55). I t  

should be noted t h a t  the harmonic fo rce  m a t r i x  i s  a symmetrical mat r i x .  

3.7 Element Equations o f  Motion for  Nonlinear 
Forced V i  bra ti on 

The a p p l i c a t i o n  o f  Lagrange's equat ion leads  t o  the equat ions o f  

motion f o r  non l i nea r  fo rced v i b r a t i o n  o f  a beam element under harmonic 

f o r c i n g  func t ion .  By us ing Eqs. (3.291, (3.38) and (3.571, the 

equat ions o f  motion are  expressed as 

where [ m l  i s  the element mass matr ix  i n  Eq. (3.301, CkLl i s  the element 

l i n e a r  s t i f f n e s s  m a t r i x  i n  Eq. (3.321, [ k ~ ~ l  i s  the element non l i nea r  

s t i f f n e s s  m a t r i x  i n  Eq. (3.371, and [h] i s  the element harmonic fo rce  

m a t r i x  i n  Eq. (3.59). It should be noted t h a t  a l l  these ma t r i ces  a r e  

symme tr i c . 
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Chapter  4 

SOLUTIONS PROCEDURES 

In this chapter, the solution procedures of f inite element method 

are explained i n  detail. The so lu t ion  procedures are divided i n t o  two 

major parts, namely, the small deflection part which is the linear 

solution, and the large amplitude p a r t  w h i c h  is  the nonlinear 

solut ion.  Each part consists o f  minor steps w h i c h  evaluate the element 

and system matrices. The iterative process for the large amplitude part 

is  also explained. The convergence criteria are also provided a n d  

convergence characteristics are shown i n  figures. F ina l  l y ,  the computer 

flow-chart o f  the so lu t ion  procedures is  provided a t  the end of this 

chapter . 
4.1 Small Deflect ion Solut ion 

(Linear Sol u t i  on) 

Linear solution i s  performed to  evaluate the l inea r  eigenvalues 

(linear frequencies) and linear eigenvectors (linear mode shapes). The 

combination of these linear mode shapes and amplitude for each mode i s  

represented for  multiple-mode approach w h i c h  i s  later used i n  the 

nonl i near sol u t i  on. 

The application of Lagrange's equation leads t o  the equation of 

motion for linear free vibrat ion of a beam element a s  



36 

where [m] and ck,] a re  the element mass and l i n e a r  s t i f f n e s s  mat r ices  as  

de f i ned  i n  Eqs. (3.30) and (3.321, respec t i ve l y .  The element mass 

matr ices,  [ m s l  and [ m b l  as def ined i n  Eq. (3.301, can be evaluated from 

Eqs. (3.26) and (3.281, respec t ive ly .  A f t e r  a l l  element mass and 

s t i f f n e s s  mat r ices  a re  known, the equations o f  motion f o r  the system can 

be assembled as 

where [ M I  and [K,] a r e  the  system mass and l i n e a r  s t i f f n e s s  matrices, 

r e s p e c t i v e l y .  { A I  i s  the eigenvector which cons is t s  o f  the .vectors i n  

term of w and wSx, and u and u , ~ .  Th is  e igenvector  { A }  can be expressed 

a s  

(4.3) 

where {$I  i s  the e igenvector  r e l a t e d  t o  w and wSx,  and (1;) i s  the eigen- 

vec tor  r e l a t e d  t o  u and uSX.  By us ing  the bending p a r t  o f  Eq. (4.21, 

t h e  system equat ions o f  motion f o r  bending on ly  can be expressed as 

(4.4) 

where [Mb] and [KLblare the  bending system mass and l i n e a r  s t i f f n e s s  

ma t r i ces  which a re  r e l a t e d  t o  Eqs. (3.28) and (3.341, respec t i ve l y .  

Equation (4.4) can be r e w r i t t e n  as 

( 4 . 5 )  

where uL i s  the l i n e a r  frequency (e igenvalue)  and {$L) i s  the corre-  

sponding l i n e a r  mode shape normalized t o  u n i t y  a t  the middle o f  beam. 

I t  should be po in ted  o u t  t h a t  f o r  each l i n e a r  frequency, there i s  a 

corresponding l i n e a r  mode shape, f o r  example, the f i r s t  l i n e a r  



37 

frequency wL1 corresponds 

w corresponds t o  {$Ln). 

t o  { $L1 1 ,  wL2 corresponds t o  {$L2 1 , .*, and 

Ln 
Through the foregoing procedure, the l i n e a r  so lu t i on  f o r  f r e e  

v i b r a t i o n  of beam has been c l a r i f i e d .  The l i n e a r  frequencies; 

.*., yn and the corresponding 1 i nea r  mode shapes; 

{I$ 1 ,  { @  I , * * * ,  {$Ln) have been evaluated. These l i n e a r  mode shapes 

w i l l  be used l a t e r  f o r  multiple-mode approach i n  the next  section. 

W ~ 1 3  W ~ 2 s  

L 1  L2 

4.2 Large Amplitude Solution 
(Nonl inear Sol u t i  on 1 

In t h i s  section, the multiple-mode nonl inear f r e e  and forced 

v i b r a t i o n s  o f  beam by f i n i t e  element method are presented. The 

i t e r a t i v e  procedure and the convergence c r i t e r i a  are a l so  included. 

A f t e r  the l i n e a r  mode shapes have been determined (see Section 4 .1  

Small De f lec t i on  Solut ion) ,  the nonl inear s o l u t i o n  i s  performed as 

fo l lows.  

By using the f i r s t  l i n e a r  mode shape and the t o t a l  amplitude a t  the 

middle o f  the beam, the de f l ec t i on  shape f o r  the f i r s t  i t e r a t i o n  i s  

expressed as 

($1 = A {$,,I. ( 4 . 6 )  

By using Eq. (4.61, the de f l ec t i on  shape of each element (6) can be 

found. By using (6) and Eq. (3.241, the l i n e a r i z i n g  func t i on  ,f, f o r  

each element can be determined. Af ter  the l i n e a r i z i n g  func t i on  has been 

determined, the element nonl inear s t i f f ness  matr ix  [k,,] f o r  each 

element can be evaluated by using Eq. (3.371. The i n t e g r a t i o n  i n  
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I '  

Eq. (3.37) can be performed by the extended Simpson's r u l e  f o r  20 

i n t e r v a l s  32 

The element s t i f f n e s s  m a t r i x  [ k l  and element mass m a t r i x  [ m l  can be 

determined by us ing  Eqs. (3.39) and (3.301, respec t i ve l y .  

The element harmonic force matr ix  [h] can be determined by us ing  

Eq. (3.59). The constant  c i n  Eq. (3.59) i s  expressed i n  Eqs. (3.531, 

(3.54) and (3.55). 

The a p p l i c a t i o n  o f  Lagrange's equat ion leads t o  the element 

non l i nea r  fo rced v i b r a t i o n  o f  beam under harmonic f o r c i n g  func t i on .  

Th is  equat ion o f  motion i s  expressed as 

Equation (4.7) can be r e w r i t t e n  as 

A f t e r  a l l  the  element mass, s t i f f n e s s  and harmonic fo rce  mat r ices  

have been determined f o r  each element, the equat ions o f  motion f o r  the  

system can be assembled as 

where [KNL] and [HI a r e  the system non l i nea r  s t i f f n e s s  and system 

harmonic force matrices, respec t ive ly .  The system equat ions o f  motion, 

Eq. (4 .9 ) ,  can be reduced i n t o  the terms o f  w amd w S x  by us ing  Guyan's 

r e d u c t i o n  technique31 and the  d e f i n i t i o n  o f  {A}  i s  de f i ned  i n  Eq. 

(4.3). Th is  reduced system equation o f  motion can be expressed as 

CRMI  C b ; >  + [RK] { 4 }  = 0 (4.10) 
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where [RM] i s  the reduced system mass matr ix  and [RK]  i s  the reduced 

system s t i f f n e s s  matrix. It should be noted t h a t  [ R K l  cons is ts  o f  no t  

only the reduced system l i n e a r  and nonl inear s t i f f n e s s  matrices b u t  a l s o  

the reduced system harmonic force matrix. 

I n  the process o f  transformation Eq. (4.9) i n t o  Eq. (4.10) there 

e x i s t s  the r e l a t i o n  between the system d e f l e c t i o n  shape {A)  and the 

reduced system d e f l e c t i o n  shape as 31 

(4.11) 

where [TRFl i s  the t ransformat ion matr ix.  

By the d e f i n i t i o n  of mu1 tiple-mode approach, the reduced system 

d e f l e c t i o n  shape { $ I  i s  the combination o f  the l i n e a r  mode shapes 

{e,) i n  Eq. (4.5) and t h e i r  amplitudes. This reduced system d e f l e c t i o n  

shape {$I can be expressed as 

where Ai i s  the amplitude o f  the i - t h  mode, {+Li) i s  the l i n e a r  mode 

shape o f  the i - t h  mode and n i s  the t o t a l  number o f  modes. Equation 

(4.12) can be r e w r i t t e n  i n  a matrix form as 

($1 = c{4)Lll {4)L*) * * * *  {$Ln) l  

o r  

where 

{ }  (4.13) 

(4.14) 



A1 
{Ao) = A2 1: An 

(4.15) 

By us ing  Eq. (4.14), Eq. (4.10) can be transformed t o  the  normal 

coordinates, {Ao}, and is expressed as 

(4.16) [$,I T C R M l  [$,I {Ao} + [@,IT CRKl C$,l {Ao) = 0 

o r  

[ R M o l  {Ao} + [RK,] { A o }  = 0. (4.17) 

Equat ion (4 .17)  i s  i n  the form o f  an eigenvalue problem which can be 

expressed as 

m i L  C R M o l  {A,) = [ R K o l  { A o )  (4.18) 

where wNL i s  the non l inear  frequency. By s o l v i n g  the e igenvalue 

problem, Eq. (4.181, the nonl inear  frequency wNLl and the e igenvector  

{ A o )  can be determined. the e igenvec tor  {A,} has been known, the  

ampl i tude r a t i o s  :; i=1,2,***, n can be determined. 

A f t e r  

By the  d e f i n i t i o n  o f  multiple-mode approach, Eq. (4.121, the 

maximum d e f l e c t i o n  (ampl i tude)  i s  the summation o f  ampli tudes o f  a l l  the  

modes. Th is  can be expressed as 

n 
A = C  A 

i=l i 
o r  

A 
A n i 
- = 1 + c  
A i = 2  A 
1 1 

or  

(4.19) 

(4.20) 
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A 
A =  . ( 4 . 2 1 )  
1 A 

n i 
l + C  

i = 2  A 
1 

The r a t i o  i s  from Eq. (4 .18)  as mentioned before. The value o f  

ampl i tude f o r  i - t h  mode, A i ,  can be solved by 

Ai 
K; 

(4 .22 )  

Through the  fo rego ing  procedure, the  f i r s t  i t e r a t i o n  has been 

completed. The nex t  i t e r a t i o n  s t a r t s  by us ing  

(4 .23 )  

By us ing  Eq. (4 .23 )  i ns tead o f  Eq. (4 .61 ,  the n e x t  i t e r a t i o n  i s  

performed from t h a t  p o i n t  onward t o  o b t a i n  the improved non l i nea r  

frequency uNLl and i - t h  ampli tude A i .  Th i s  i t e r a t i v e  process can now be 

repeated u n t i l  a convergence c r i t e r i o n  (Sec t ion  4 . 3 )  i s  s a t i s f i e d .  I t  

should be noted t h a t  the nonl inear  s t i f f n e s s  m a t r i x  [kNLl  and the  

harmonic m a t r i x  [h] a re  updated i n  each i t e r a t i v e  process because o f  t he  

changing o f  the values o f  A i .  The f l ow-char t  o f  t h i s  s o l u t i o n  procedure 

i s  shown i n  Fig. 3. 

4.3 Convergence Criteria 

Three displacement convergence c r i t e r i a  proposed by Bergan and 

C 1 0 u g h ~ ~  and a frequency convergence c r i t e r i o n  a r e  employed i n  the  

p resen t  study. The three displacement norms ( c r i t e r i a )  a r e  the mod i f i ed  

abso lu te  norm, the mod i f ied  Euclidean norm and the maximum norm. The 

d e f i n i t i o n s  of these th ree  norms are  g iven i n  the Appendix. The 
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f 
Guyan ' s Reduction I CRMl{'Q;) + C R K I { + )  = 0 

I Solve f o r  wNLl and {Ao)  I 

A 
A =A 
i A 

l + C  
n i 
i = 2  A 

i 

Fig. 3 Computer Flow-Chart (So lu t i on  Procedures) 
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NUMBER OF ITERATION 

2 3 5 6 

10-4 

F i g .  4. Convergence charac te r i s t ics  of a simply supported beam W/O I D I ,  
d is t r ibuted force Fo= 0.001 N/mm, 3 modes A / R  = 2.0.  
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frequency norm i s  defined l (A%L) j / (%L) j l  where (A%L)j i s  the change 

i n  non l i nea r  frequency du r ing  the j - t h  i t e r a t i v e  cyc le .  Fig. 4 shows a 

t y p i c a l  p l o t  of these f o u r  norms versus number o f  i t e r a t i o n s  f o r  a 

three-mode s imply  supported beam (L/R = 1010) w i t h o u t  i np lane  

displacement and i n e r t i a  (101) subjected to a un i fo rm ly  d i s t r i b u t e d  

harmonic f o r c e  Fo = 0.001 N/mm a t  A/R = 2.0. F ig .  5 shows a p l o t  o f  

these four  norms versus number of  i t e r a t i o n s  f o r  a three-mode clamped 

beam (L/R = 1010) w i t h  inp lane displacement and i n e r t i a  (IDI) when bo th  

ends are  immovable (u  = 0 a t  x = 0 and L )  and the  beam i s  subjected 

t o  a un i fo rm ly  d i s t r i b u t e d  harmonic f o r c e  Fo = 0.002 N/mm a t  

A/R = 4.0. For  a l l  o f  the fo l l ow ing  r e s u l t s  presented i n  t h i s  study, 

convergence i s  considered to be achieved whenever any one o f  the norms 

reaches a value o f  
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N U M B E R  O F  I T E R A T I O N S  

F i g .  5 .  Convergence c h a r a c t e r i s t i c s  o f  a clamped beam W/IDI immovable, 
d i s t r i b u t e d  f o r c e  Fo = 0.002 N/mm, 3 modes, A /R  = 4.0. 
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Chapter 5 

RESULTS AND DISCUSSIONS 

The fundamental frequency ratio ( w  = qLl / w  L1 1 of multiple-mode 

nonlinear free and forced vibra t ions  a t  various amplitudes for simply 

supported and clamped beams are reported i n  this chapter. Both 

immovable and movable inplane edges cond i t ions  are considered. Finite 

element results w i t h  and w i t h o u t  inplane displacement and inertia ( I D 1 1  

are given. The meaning of " w i t h o u t  inplane dispalcement and inertia" i s  

t o  neglect {C), Eq. (4.31, completely from the formulation. The 

harmonic balance sol u t i o n 1 7 ,  Runge-Kutta sol u t i  on and  experimental 

result18 are also given for  comparison w i t h  the f ini te  element 

results. Because of symmetry, only a half of beam divided i n t o  twenty 

elements of equal length i s  considered herein. 

5.1 Boundary Conditions and Material Properties 

The transverse deflection boundary cond i t ion  f o r  simply supported 

beam i s  defined by letting the deflection ( w )  equal to zero a t  t h a t  

location. For clamped supported beam, the transverse deflection 

boundary cond i t ions  are the deflection ( w )  and  i t s  associated 

slope ( w , ~ )  equaled to  zero a t  t h a t  locat ion.  The inplane boundary 

c o n d i t i o n s  are divided i n t o  two catagories; namely, immovable and 

movable inplane edge. The definition of immovable inplane edge i s  

defined a s  the inplane displacement ( u )  a t  the boundary equaled t o  
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zero. For the movable inp lane edge, the inp lane displacement (u )  i s  s e t  

f r e e  a t  the boundary. 

A l l  the r e s u l t s  presented here a r e  based on the f o l l o w i n g  m a t e r i a l  

proper  t i e s :  

- 2 4  
mass dens i t y  p = 26.6832 E-10 N - sec /mm 

th ickness  h = 0.514 mm 

w i d t h  B = 26.0 mm 

Young's modulus E = 6.98 E+04 

r a d i u s  o f  g y r a t i o n  R = 0.148379 mm 

2 N /mm 

For  non l i nea r  v i b r a t i o n ,  the e f f e c t  o f  slenderness r a t i o  ( L / R )  has 

some i n f l u e n c e  i n  the  so lu t ions .  I n  t h i s  repo r t ,  there  a re  many 

slenderness r a t i o s  i n  use as shown i n  Table 1. These slenderness r a t i o s  

a r e  c a l c u l a t e d  by changing the  beam l e n g t h  and keeping the cross- 

sec t i ona l  area constant. Most of the r e s u l t s  repo r ted  herein, i s  based 

on the  150 mm. beam leng th  ( L / R  = 1010) otherwise spec i f ied .  Th is  150 

mm. l ong  beam ( L / R  = 1010) i s  the same dimension as the beam which 

Yamaki e t  a1 .18 performed the  experiment. 

5.2 Improved Nonlinear Free Vibration 

The fundamental frequency r a t i o s  ( % L ~ / w L ~ )  of f r e e  v i b r a t i o n  a t  

va r ious  amp1 i tudes ( A / R )  w i t h o u t  inplane displacement and i n e r t i a  ( I D I )  

f o r  clamped and simply supported beams ( L / R  = 1010) a r e  shown i n  Table 2 

f o r  the cases o f  s ing le,  two and three-mode method, respec t i ve l y .  The 

ampl i tude r a t i o  f o r  these beams are a l s o  prov ided i n  Table 3. Table 2 

shows t h a t  the more numbers o f  modes are  used i n  the ana lys is ,  the l e s s  

t h e  frequency r a t i o s  w i l l  be, e.g., a t  A/R = 5.0, the  three-mode 
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Table 1 Re la t ions  Between Slenderness R a t i o  
(L/R) and Beam Length 

Slenderness 
R a t i o  

L/R 

Beam 
Length 
L (mm.) 

1010 
100 
50 
20 

150.000 
14.840 
7.420 
2.968 
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Table 2 Frequency Rat ios  for Nonlinear Free Vibration o f  
Clamped and Simply Supported Beams (L/R = 1010) 
without  Inplane Displacement and I n e r t i a  ( IDI )  

A/R 
Frequency Ratio,  w /w  NL1 L1 

1 mode 2 modes 3 modes 
~ 

Fini te  E l l i p t i c  Finite 
E 1 emen t Solu t ion  Element 

~ ~ 

F i  n i  te 
E l  emen t 

Clamped Beam 

1 .o 1.0218 1.0222 1.0218 (2Ia 1.0217 (3) 
2.0 1 . 0845 1.0857 1.0844 ( 3 )  1.0831 (4) 
3.0 1.1817 1.1831 1.1814 (5) 1.1757 (4) 
4.0 1.3056 1.3064 1.3051 (6) 1.2900 (6) 
5 .O 1.4495 1.4488 1.4490 (8) 1.4188 (9) 

Simply Supported Beam 

1 .o 1.0897 1.0892 1.0888 (3) 1.0888 (3) 
2.0 1.3229 1.3178 1.3120 (5) 1.3119 (5) 
3 .O 1.6394 1.6257 1.6030 (7) 1.6022 (7) 
4.0 2.0000 1.9760 1.9248 (11) 1.9218 (11) 
5 .O 2.3848 2.3501 2.2624 (17) 2.2549 (18) 

a. Number i n  b racke ts  denotes the number o f  i t e r a t i o n s  to  g e t  a 
converged so lu t ion  
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Table 3 Amplitude Ratios for Nonlinear Free Vibration o f  Clamped 
and Simply Supported Beams ( L / R  = 1010) without Inplane 
Displacement and Inertia (IDI) 

AIR 2 modes 3 modes 

*1/*2 A1/A3 
Clamped Beam 

1.0 - 1054 
2.0 - 280 
3.0 - 137 
4.0 - a7 
5 .O - 64 

- 1056 
- 252 
- 139 
- a9 
- 66 

2164 
559 
26 1 
157 
109 

Simply Supported Beam 

1 .o 446 
2.0 125 
3.0 66 
4.0 45 
5 .O 35 

446 
125 
66 
44 
34 

* 
7652 
1972 
848 
48 0 

Number i s  larger than 11041 * 
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solution yields smaller frequency r a t i o s  t h a n  the two-mode solution. 

Table 3 shows the influence of the amplitudes of the higher modes, 

especially the amplitude of second mode. Table 4 shows the comparison 

of a bo-mode response between the f ini te  element method and the Runge- 

K u t t a  method for clamped and simply supported beams (L/R = 1010) w i t h o u t  

inplane displacement and inertia ( IDI) .  This clearly demonstrates the 

remarkable agreement between f in i t e  element and Runge-Kutta solut ions.  

These results are also shown i n  Figures 6 and  7 for the clamped and  

simply supported cases, respectively. 

The clamped and simply supported free vibration results 

(L/R = 1010) w i t h  inplane displacement and inertia (IDI) for b o t h  ends 

restrained from longitudinal movement (immovable case) are shown i n  

Table 5. The amplitude ratios for this clamped beam are also shown in 

Table 6. The frequency-amp1 i tude rela tionships for three-mode responses 

o f  these clamped and simply supported beams are a l s o  shown i n  Figure 

8. This figure clearly shows t h a t  the simply supported beam yields the 

higher nonlinearity than the clamped beam. 

The responses for b o t h  ends free t o  move longitudinally (movable 

case) are shown i n  Tables 7 and 8. Table 7 shows the frequency- 

amp1 i tude relations for three-mode solution of clamped and simply 

supported beams w i t h  inplane deformation and inertia for the slenderness 

r a t i o  of 100, 50 and 20. The result for  the clamped case i s  also shown 

i n  Figure 9. From this figure, the high slenderness ratio beam 

(L/R = 100) yields almost none o f  nonlinearity. Conversely, the less 

slenderness r a t i o  case ( L / R  = 20) leads t o  a s i t u a t i o n  t h a t  eventually 

exhibits slightly softening type nonlinearity. The softened type exists 

when the nonlinear frequency i s  less the linear frequency ( w < l . O ) .  



52 

Table 4 Comparison Between Runge-Kutta Method and F i n i t e  
Element Method for  Two-Mode Nonlinear Free V ib ra t i on  
o f  Clamped and S imp ly  Supported Beams (L/R = 1010) 
w i thou t  Inplane Displacement and I n e r t i a  (101). 

Frequency Ratio, qL1/uL1 

F i n i t e  Element Runge-Ku t t a  

A/R X Dif ferencet  

Clamped Beam 

1.0 
2 .o 
3.0 

4.0 

5.0 

1.0218 

1.0845 

1.1817 

1.3056 

1.4495 

1.0222 0.04 

1.0852 0.07 

1.1810 ' 0.03 

1.3009 0.32 

1.4373 0.81 

Simply Supported Beam 

1.0 

2.0 

3.0 

4.0 

5.0 

1.0888 

1.3120 

1.6030 

1.9248 

2.2624 

1.0888 0.00 

1.3135 0.11 

1.6115 0.53 

1.9467 1.13 

2.3023 1.73 

(Runge-Kutta) - ( F i n i t e  Element) % I ( Runge-Ku t t a  1 I % Di f ference = 
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Table 5 Frequency Ratios for Nonlinear Free Vibration o f  
Clamped and Simply Supported Immovable Beams 
( L / R  = 1010) with Inplane Displacement and Inertia 
(ID1 1 

Frequency Ratio, %L1/wLl 

A/R 1 mode 2 modes 3 modes 

Finite Ray 1 e i g h Finite 
El emen t R i  t z5  El emen t 

Finite 
El emen t 

Clamped Beam 

1.0 1.0149 - 
2.0 1.0582 - 
3 .O 1.1268 - 
4.0 1.2164 - 
5 .O 1.3226 - 

1.0149 (2)' 1.0149 ( 2 )  
1.0581 ( 3 )  1.0581 ( 3 )  

1.1264 ( 4 )  1.1259 ( 4 )  

1.2151 (5) 1.2140 (2 )  

1.3202 (6) 1.3176 ( 6 )  

Simply Supported Beam 

1 .o 1.0607 1 .0607b 1.0607 (2 )  1.0607 ( 2 )  

2.0 1.2247 1.2246 1.2247 (2)  1.2247 (2 )  

3.0 1.4577 1.4573 1.4577 ( 2 )  1.4577 ( 2 )  

4.0 1 . 7320 1.7309 1.7320 ( 2 )  1.7320 (2 )  
5 .O 2.0310 2.0289 2.0310 (2 )  2.0310 ( 2 )  

a. Number i n  brackets denotes the number o f  iterations to  get a 
converged sol u t i on  

b. L / R  = 100 
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Table 6 Amplitude Ratios for Nonlinear Free Vibrat ion o f  
Clamped Immovable Beams ( L / R  = 1010) w i t h  Inp lane  
Displacement and I n e r t i a  (ID11 

Amp1 i tude Ratio 

A / R  2 modes 3 modes 

%/A2 Al’A2 A1/A3 

1 .o - 1354 
2.0 - 346 
3.0 - 159 
4.0 - 94 
5.0 - 64 

- 1354 
- 346 
- 159 
- 95 
- 64 

* 
2690 
1202 

678 
442 

* 
Number i s  larger than 11041 
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Table 7 Frequency Ratios ( wNLI/wL1 for Three-Mode Nonlinear 
Free Vibration of Clamped and Simply Supported Movable 
Beams with Inplane Displacement and Inertia ( I D I )  for 
Different Slenderness Ratio ( L / R )  

Slenderness Ratio, L/R 
A / R  

100 . 50 20 

Clamped Beam 

1 .o .9999 ( 2 P  .9997 (2) .9983 (2) 
2.0 .9997 (2) .9989 (2) .9933 (2) 
3 .O .9994 (2) .9976 (2) .9850 (3) 
4.0 .9989 (2) .9957 (2) .9737 (3) 
5 .O .9983 (2) .9933 (2) .9596 (3) 

Simply Supported Beam 

1 .o 1.0000 (2) .9999 (2) .9993 (2) 
2.0 .9999 (2) .9996 (2) .9973 (2) 
3 .O .9998 (2) .9990 (2) .9938 (2) 
4.0 .9996 (2) .9982 (2) .9891 (2) 
5 .O .9993 (2) 09973 (2) .9832 (2) 

a. Number in brackets denotes the number of iterations to get a 
converged solution . 
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Table 8 Amplitude Ratios for Three-Mode Nonlinear Free 
Vibration o f  Clamped and Simply Supported Move- 
able Beams ( L / R  = 20) with Inplane Displacement 
and Inertia ( I D I )  

Amp1 i tude Ratio A / R  

C 1 amped beam 

1.0 
2 .o 
3.0 
4.0 
5.0 

6410 
1613 
724 
414 
270 

* 
* 

- 8914 
- 5152 
- 3413 

Simply Supported Beam 

1.0 
2.0 
3.0 
4.0 
5.0 

* 
* 

5178 
2936 
1898 

* Number i s  larger than 11041 
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A t l u r i 8  a l s o  obta ined the s i m i l a r  so f ten ing  type i n  h i s  i n v e s t i g a t i o n .  

For  the  simply supported case as shown i n  Table 7, i t  e x h i b i t s  l e s s  

i n f l u e n c e  o f  so f ten ing  type than the clamped case. Table 8 shows the  

amp1 i tude r a t i o s  f o r  three-mode s o l u t i o n  o f  clamped and simply supported 

movable beams (L/R = 20) w i t h  I D I .  The comparison o f  the ampl i tude 

r a t i o  between the movable clamped case (Table 8) and the  immovable 

clamped case (Table 6) shows t h a t  the h igher  modes have more i n f l u e n c e  

on the  immovable case than the  movable case. 

5.3 Nonlinear Response tn Distributed 
Harmonic Force 

The responses o f  clamped and simply supported beams (L/R = 1010) 

w i t h o u t  I D 1  a re  shown i n  Tables 9 and 10. Table 9 shows the frequency 

r a t i o s  f o r  the cases o f  s ing le,  l x o  and three-mode approaches. I t  

should be noted t h a t  as the ampli tude i s  increased, the more i t e r a t i o n  

i s  needed. The ampl i tude r a t i o s  f o r  these beams i s  shown i n  Table 10. 

The frequency-amp1 i tude r e l a t i o n s  f o r  these clamped and simply supported 

beams w i t h  var ious  fo rce  i n t e n s i t y  (Fo) are  a l s o  p l o t t e d  i n  F igures  10 

and 11 f o r  the three-mode so lu t i on ,  r e s p e c t i v e l y .  

The responses o f  clamped and simply supported immovable beams 

(L/R = 1010) w i t h  I D 1  a re  shown i n  Tables 11 and 12. Table 11 shows the  

frequency r a t i o s  f o r  the cases o f  s ing le ,  two and three-mode 

approaches. It a l s o  shows t h a t  the h igher  modes are  more impor tan t  f o r  

the  clamped beam than the simply supported beam. Th is  can be observed 

by l o o k i n g  a t  one o f  the amplitude, eg. A/R = + 5.0, the frequency r a t i o  

f o r  the  clamped beam i s  changed f o r  d i f f e r e n t  numbers o f  modes used i n  

the fo rmula t ion ,  b u t  the frequency r a t i o  f o r  the simply supported beam 
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Table 9 Frequency Rat ios f o r  Nonl inear  Forced V i b r a t i o n  o f  
Clamped and Simply Supported Beams (L/R = 1010) w i  t h o u t  
Inp lane Displacement and I n e r t i a  ( I D I )  under Uniform 
Harmonic D i  s tri bu ted Force 

Frequency Ratio, wNLl/wL1 
A/R 

1 mode 2 modes 3 modes 

Clamped Beam: Fo = 0.002 N/mm 

- 1.0 .4101 
1.3856 

.4105 (3Ia 
1.3855 (3) 

.4097 (3) 
1.3856 (2) 

2.0 -8592 
1.2705 

.8595 (4) 
1.2701 (3) 

.8573 (3) 
1.2694 (4) 

f 3.0 1.0509 
1.2994 

1.0511 (5) 
1.2987 (4) 

1.0440 (5) 
1.2940 (4) 

f 4.0 1.2189 
1.3869 

1.2189 (6) 
1.3860 (6) 

1.2019 (7) 
1.3725 (6) 

f 5.0 1.3877 
1 . 5087 1.3878 (8) 

1.5078 (8) 
1.3554 (9) 
1.4794 (8) 

Simply Supported Beam: Fo = 0.001 N/mm 

- 1.0 1.8328 1.8331 (3) 1.8331 (3) 

f 2.0 -8150 
1.6840 

.7937 (5) 
1.6771 (5) 

.7934 ( 5 )  
1.6771 ( 5 )  

f 3.0 1.4013 
1.8470 

1.3560 (7) 
1.8168 ( 7 )  

1.3549 (7) 
1.8162 (7) 

f 4.0 1.8593 
2.1314 

1.7760 (11) 
2.0629 (11) 

1.7725 (11) 
2.0603 (11) 

f 5.0 2 . 2920 
2.4742 

2.1625 (17) 
2.3581 (17) 

2.1543 (18) 
2.3511 (18) 

~ ~~ 

a. Number i n  b rackets  denotes the number o f  i t e r a t i o n s  t o  g e t  a 
converged sol u t i  on 



Table 10 Amplitude Ratios for Nonlinear Forced Vibra- 
tion o f  Clamped and Simply Supported Beams 
( L / R  = 1010) w i t h o u t  Inplane Displacement 
and Inertia (ID11 under Uniform Harmonic 
Distributed Force 

Amp1 i tude Ratio 

A / R  2 modes 3 modes 

AdA2 A d A 2  A1/A3 

Clamped Beam: Fo = 0.002 N/mm 
~ ~~~~ 

f 1.0 - 1054 - 1056 2164 

f 2.0 - 280 - 282 559 

f 3.0 - 137 - 139 261  

f 4.0 - 87 - 89 157 

f 5.0 - 64 - 66 109 

Simply Supported Beam: Fo = 0.001 N/mm 

- 1.0 446 

f 2.0 125 

f 3.0 66 

f 4.0 45 

f 5.0 35 

446 * 

125 7652 

66 1972 

44 848 

34 480 . 

* Number i s  larger than 11041. 
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Table 11 Frequency Rat ios  fo r  Nonl inear  Forced V i b r a t i o n  
o f  Clamped and Simply Supported Immovable Beams 
(L/R = 1010) w i t h  Inp lane Displacement and 
I n e r t i a  ( I D I )  under Uni form Harmonic D i s t r i b u t e d  
Force 

Frequency Ratio, uNL1/uL1 
A/R 

1 mode 2 modes 3 modes 

Clamped Beam: Fo = 0.002 N/mm. 

f 1.0 .3925 
1.3805 

.3929 (3)"  
1.3804 (3 )  

.3928 ( 3 )  
1.3804 ( 3 )  

f 2.0 .8258 
1.2481 

.8260 (4 )  
1.2478 (3 )  

.8258 ( 4 )  
1.2478 ( 3 )  

f 3.0 .9888 
1.2497 

-9888 (4 )  
1.2489 (3 )  

.9881 ( 4 )  
1.2486 ( 4 )  

f 4.0 1.1227. 
1.3033 

1.1220 (5 )  
1.3017 (4 )  

1.1205 ( 5 )  
1.3007 ( 4 )  

f 5.0 1.2546 
1.3872 

1.2527 (6 )  
1.3845 ( 6 )  

1.2497 ( 6 )  
1.3821 ( 6 )  

Simply Supported Beam Fo = 0.001 N/mm 

- 1.0 1.8156 1.8156 ( 2 )  1.8156 ( 2 )  

f 2.0 .6436 
1.6080 

.6436 (2 )  
1.6080 ( 2 )  

.6436 ( 2 )  
1.6080 ( 2 )  

f 3.0 1 . 1837 
1.6879 

1.1837 (2 )  
1.6879 ( 2 )  

1.1837 ( 2 )  
1.6879 ( 2 )  

f 4.0 1.5675 
1.8823 

1.5675 (2 )  
1.8823 (2 )  

1.5675 ( 2 )  
1.8823 ( 2 )  

f 5.0 1.9211 
2.1352 

1.9211 (2 )  
2.1352 (2 )  

1.9211 ( 2 )  
2.1352 ( 2 )  

a. Number i n  brackets  denotes the number o f  i t e r a t i o n s  t o  

g e t  a converged s o l u t i o n  



Table 12 Amplitude Rat ios  f o r  Nonl inear  Forced V i b r a t i o n  o f  
Clamped Immovable Beam (L/R = 1010) w i t h  Inp lane 
Displacement and I n e r t i a  ( I D I )  under Uniform Harmonic 
D i s t r i b u t e d  Force; F, = 0.002 N/mm. 

Amp1 i tude R a t i o  

A/R 2 modes 3 modes 

AdA2 A1/A2 A1/A3 

1.0 - 1354 - 1354 * 

f 2.0 - 346 - 346 2689 

f 3.0 - 159 - 159 1202 

f 4.0 - 94 - 94 682 

f 5.0 - 64 - 64 442 

* Number i s  l a r g e r  than 11041 
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apparently remains the same no matter how many modes a r e  used i n  the 

formulation. Figure 12 shows the frequency-ampli t u d e  r e l a t ion  for  the 

clamped immovable beam under uniform harmonic force intensity of Fo = 0 

(free-vibrat ion case) ,  0.002 and 0.004 N/mm. I t  should be noted t h a t  

a l l  curves i n  this figure shows the hardening type nonl inear i ty .  Figure 

13 shows the comparison of harmonic balance method17, experiment'* and 

f i n i t e  element method for a clamped immovable beam under uniform 

harmonic d i s t r i b u t e d  force intensity Fo = 0.004170277 N/mm. I t  c l ea r ly  

demonstrates the remarkable agreement between the experiment and the 

f in i te  element ( w i t h  ID11 solution. 

The responses for  the movable cases a r e  shown i n  Table 13 and 14. 

Table 13 shows the frequency r a t io s  and amplitude r a t i o s  for  three-mode 

clamped movable beam w i t h  ID1 under uniform harmonic force.  Similar ly ,  

the results of the simply supported beam a re  shown i n  Table 14. Figure 

14 shows the frequency-amp1 i t u d e  rela t ion for  three-mode clamped movable 

beam of slenderness r a t i o  L / R  = 20. All of the curves i n  t h i s  f igure  

shows t h a t  the beam eventually exh ib i t s  s l i g h t l y  softening type 

nonl inear i ty .  Figure 15 shows the comparison between the immovable case 

and the movable case for  a three-mode clamped beam (L/R = 100) w i t h  

ID1 under the force i n t e n s i t y  Fo = 20 N/mm. T h i s  c l ea r ly  shows t h a t  the 

movable case reduces beam nonlinearity when compared to  the immovable 

case . 
5.4 Nonlinear Response to Concentrated 

Harmonic Force 

The appl icat ion of the f i n i t e  element method t o  simulate the case 

of a concentrated force i s  to l e t  the l e n g t h  of the loaded element 
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Fig. 13. Forced vibration, clamped beam, immovable distributed force Fo = 
0.004170277 N/mm experiment v s .  harmonic balance method vs. 
finite element method ( W / I D I ,  3 modes). 



Table 13 Frequency Ratios and Amplitude Rat ios  f o r  
Three-Mode Nonlinear Forced V i b r a t i o n  o f  
Clamped Movable Beam w i t h  Inp lane D isp lace  
ment and I n e r t i a  ( I D I )  under Uni form Harmonic 
D i s t r i b u t e d  Force 

F r equen cy 
A/R Ratio, 

@NL 1 / w ~  1 

Amp1 i tude R a t i o  

L/R = 100; Fo = 20 N/mm 

f 1.0 .4011 (2Ia 
1.3560 (2)  

* 
* 

* 
* 

f 2.0 .7617 (2 )  
1.1911 (2 )  

* 
* 

* 
* 

f 3.0 .8482 ( 2 )  
1.1306 ( 2 )  

* 
* 

* 
* 

f 4.0 .8880 ( 2 )  
1.0987 (2) 

* 
8271 

* 
* 

f 5.0 .9107 ( 2 )  
1.0788 ( 2 )  

7704 
5488 

* 
* 

L/R = 20; Fo = 5000 N/mm 

f 1.0 .8137 ( 3 )  - 1.1538 ( 2 )  
9653 
4797 

* 
* 

2.0 .go61 (3 )  
1.0734 (3 )  

1940 
1380 

* 
* 

3.0 -9282 ( 3 )  
1.0387 ( 2 )  

817 
651 

* 
- 8020 

f 4.0 .9319 (3 )  
1.0137 ( 3 )  

452 
38 1 

- 5620 - 4757 

f 5.0 .9268 (3 )  
.9913 ( 3 )  

290 
252 

- 3655 - 3202 

a. Number i n  b rackets  denotes the number o f  i t e r a t i o n s  t o  
g e t  a converged so lu t i on  
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Table 14 Frequency Rat ios  and Amplitude Rat ios  f o r  Three- 
Mode Nonl inear  Forced V i b r a t i o n  o f  Simply Supported 
Movable Beam w i t h  Inplane Displacement and I n e r t i a  
( I D I )  under Uniform Harmonic D i s t r i b u t e d  Force 

Frequency 
A/R Ra t io  

Amp1 i tude R a t i o  

L/R = 100; Fo = 3 N/mm 

f 1.0 .6131 (2) 
1.2744 ( 2 )  

* 
* 

* 
* 

f 2.0 .8293 (2) 
1.1453 ( 2 )  

* 
* 

* 
* 

f 3.0 .8897 (2) 
1.0988 ( 2 )  

* 
* 

* 
* 

f 4.0 .9183 ( 2 )  
1.0747 ( 2 )  

* 
* 

* 
* 

f 5.0 .9349 ( 2 )  
1.0598 ( 2 )  

* 
* 

* 
* 

~~~ 

L/R = 20; Fo = 1000 N/mm 

f 1.0 .8162 ( 2 )  
1.1537 (2) 

* * 
* * 

f 2.0 .9105 ( 2 )  
1.0770 (2) 

* * 
9929 * 

f 3.0 .9371 (2) 
1.0475 ( 2 )  

5825 * 
4660 * 

f 4.0 .9471 (3) 
1.0295 (2) 

3203 * 
2709 * 

f 5.0 09499 (3) 
1.0154 ( 2 )  

2034 * 
1779 * 

a. Number i n  brackets  denotes the number o f  i t e r a t i o n s  t o  
g e t  a converged s o l u t i o n  
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become smal le r  and smaller. By l e t t i n g  Ro t o  be the  l e n g t h  o f  loaded 

element from coord inate x=a t o  x=b, Eq. (3.55) can be a p p l i e d  t o  

eva lua te  the constant  c which provides the harmonic fo rce  m a t r i x  [h] i n  

Eq. (3.59). The e f f e c t  o f  the  l eng th  o f  the loaded element, Ro, i s  

s tud ied  and shown i n  Table 15 f o r  a three-mode clamped immovable beam 

(L /R = 1010) w i t h  I D 1  f o r  the t o t a l  f o r c e  P o f  0.3 N a t  the middle o f  

beam. The s imulated d i s t r i b u t e d  force i n t e n s i t y  over the  loaded element 

i s  c a l c u l a t e d  by Fo = P/Ro f o r  Eq. (3.59). S i m i l a r l y ,  the e f f e c t  

o f  lo i s  shown i n  Table 16 f o r  a two-mode simply supported immovable 

beam ( L / R  = 1010) w i t h  I D I .  The comparison o f  a beam under the same 

amount o f  the t o t a l  f o rce  P = 0.3 N, b u t  d i f f e r e n t  k i n d  o f  loading,  i s  

shown i n  F igu re  16. I n  t h i s  f igure,  a three-mode clamped immovable beam 

( L / R  = 1010) w i t h  I D 1  under a concentrated f o r c e  a t  the middle 

(lo /L=2%) i s  p l o t t e d  aga ins t  a s i m i l a r  beam under un i fo rm ly  d i s t r i b u t e d  

i 
force over the  e n t i r e  beam (Fo = 0.002 N/mm.). S i m i l a r l y ,  the two-mode 

s imply  supported so lu t i ons  f o r  the t o t a l  f o rce  P = 0.15N, Fo = 0.001 

N/mm f o r  un i fo rm d i s t r i b u t e d  fo rce  over e n t i r e  beam case, a re  p l o t t e d  i n  

F igu re  17. I t  shows t h a t  the concentrated fo rce  cases are  much more 

severe than the uni form d i s t r i b u t e d  fo rce  f o r  the cases studied. I 
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Table 15 Frequency Ratios for Three-Mode Forced Vibration 
o f  Clamped Immovable Beam ( L / R  = 1010) w i t h  Inplane 
Displacement and Inertia (IDI) under Concentrated 
Harmonic Force: Total Force P = 0.3 N 

Frequency Ratio, %L1/~L1 

A/R (Lo/L)  percent 

5 2 1 

- 1.0 1.6425 (3Ia 

f 2.0 .5372 (4) 
1.3965 (4) 

f 3.0 .8468 (5) 
1.3485 (4) 

f 4.0 1.0314 (6) 
1.3724 (5) 

f 5.0 1.1879 (7.) 
1.4356 (5 )  

1.6436 (3) 

.5357 (4) 
1.3971 (4) 

.8462 (5) 
1.3489 (4) 

1.0310 (6) 
1.3727 (5) 

1.1876 (7) 
1.4359 (5) 

1.6437 (3) 

.5354 (4) 
1.3972 (4) 

.8461 (5) 
1.3490 (4) 

1.0310 (6) 
1.3728 (5) 

1.1876 (7) 
1.4359 ( 5 )  

a. Number i n  brackets denotes the number o f  i t e r a t ions  to  
get a converged solution 
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Table 16 Frequency Ratios for  Two-Mode Nonlinear Forced 
Vibration of Simply Supported Immovable Beam ( L / R  = 
1010) w i t h  Inplane Displacement and I n e r t i a  (ID1 under 
Concentrated Harmonic Force: Total Force P = 0.15 N. 

Frequency Ratio, w N L ~ / w L ~  

. A/R ( l o / L  1 percent 

5 2 1 

- 1.0 2.1286 (2Ia 

- 2.0 1.7897 ( 2 )  

f 3.0 .9949 ( 2 )  
1.8056 (2 )  

f 4.0 1.4658 ( 2 )  
1.9625 ( 2 )  

f 5.0 1.8558 (2 )  
2.1923 (2) 

2.1296 ( 2 )  

1.7903 (2 )  

.9941 ( 2 )  
1.8060 (2 )  

1.4654 (2) 
1.9628 ( 2 )  

1.8555 (2) 
2.1925 ( 2 )  

2.1297 ( 2 )  

1.7904 ( 2 )  

.9940 ( 2 )  
1.8061 (2 )  

1.4654 ( 2 )  
1.9628 ( 2 )  

1.8555 ( 2 )  
2.1925 ( 2 )  

a .  Number i n  brackets denotes the number of i t e r a t i v e s  t o  get 
a converged solut ion 
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Chapter 6 

CONCLUSIONS 

Multiple-mode nonlinear forced v i b r a t i o n  of a beam has been 

analyzed by the f i n i t e  element method. Inplane ( l o n g i t u d i n a l  1 

displacement and inertia (ID11 are considered i n  the formulation. 

Nonlinear free vibration can be simply treated as a special case of the 

general forced vibration by setting the harmonic force matrix equal t o  

zero. The effect of the higher modes i s  more pronounced for the clamped 

supported beam than the simply supported one. In  a d d i t i o n ,  the beam 

w i t h o u t  inplane displacement and inertia y i e l d s  more effect i n  the 

higher modes than the one w i t h  inplane deformation and inertia. The 

effect of midplane stretching due t o  large deflection is  t o  increase the 

nonlinearity. However, the effects of inplane displacement and  inertia 

are to reduce nonlinearity. A beam w i t h  end supports restrained from 

axia l  movement (immovable case), o n l y  the hardening type nonlinearity i s  

observed. 100) w i t h  movable 

end supports, the increase i n  nonlinearity' due to large deflection i s  

partially compensated by the reduction i n  nonlinear due to  inplane 

displacement and inertia. This leads t o  a negligible hardening type 

nonlinearity, therefore, the smal 1 deflection linear solution can be 

employed. However, beams of small slenderness ratio (L/R = 20) w i t h  

movable end supports, the softening type nonlinearity is found. The 

For beams of large slenderness ratio ( L / R  
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concentrated force case y i e l d s  a more severe response than the un i fo rm ly  

d i s t r i b u t e d  force case. 

The f i n i t e  element method, i n  practice, i s  more su i tab le  t o  use t o  

analyze modern complex structures.  Nonlinear theory can be employed t o  

ob ta in  more accurate so lut ions and explain new phenomena. By combining 

the f i n i t e  element method and nonlinear theory together, the more 

r e a l i s t i c  models o f  s t r u c t u r a l  responses can be resu l ted  e a s i l y  and less  

time consuming. The nonl inear f i n i t e  element method which i s  studied 

herein, may be extended t o  study many more advanced top i c  researches, 

for  example, the service l i f e  o f  the s t ruc tu re  (S-N curve), the study i n  

nonl inear  random v i b r a t i o n  and the e f f e c t s  o f  sub o r  super-harmonic 

exc i ta t i ons .  This c l e a r l y  demonstrates an advantage f o r  researchers t o  

employ t h i s  multiple-mode nonl inear v ib ra t i on  i n  the future.  
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APPEND I X 
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CONVERGENCE CRITERIA 

N 

j=1 
I A = i Z  

Three displacement convergence criteria (norms) used by Bergan and 

C 1 0 u g h ~ ~  for mu1 tiple-mode nonlinear free and forced vibrations by 

f ini te  element method are employed. These three norms are the maximum 

norm, the modified absolute norm and the modified Euclidean norm. 

j 
Av 

'j,ref 

The maximum norm is  defined as  

The modified absolute norm is defined a s  

I I& 
The modified Euclidean 

2 1 /2  

1 

( A . 1 )  

(A.2) 

(A.3) 

In these expressions, A v .  is  the change in displacement component j 

d u r i n g  iterative cycle n, and v j S r e f  i s  the reference displacement w h i c h  

i s  the largest displacement component of the corresponding "type". For 

instance i n  a nonlinear vibration problem i n v o l v i n g  deflections w and 

rotations w, the reference displacement are the largest deflection and 

the largest rotation of the corresponding type. 

J 

X '  


